
公众号/ ScienceAI(ID:Philosophyai) 编辑 | 萝卜皮 机器学习方法,特别是在大型数 […]
快速浏览一下资讯类网站就会发现,如今生成人工智能似乎变得无处不在。事实上,其中一些新闻资讯可能是由生成式人工智能帮忙撰写的,例如 OpenAI 的 ChatGPT。
密度泛函理论(DFT)的定理建立了多体系统的局部外部势与其电子密度、波函数以及单粒子约化密度矩阵之间的双射映射。
设计新型催化剂是解决许多能源和环境挑战的关键。尽管包括机器学习 (ML) 在内的数据科学方法有望加速催化剂的开发,通过机器学习方法很少发现真正新颖的催化剂,因为它最大的局限性是假设无法推断和识别特殊材料。
微观结构分割是一种从显微图像中提取结构统计数据的技术,是在广泛的材料研究领域建立定量结构-性能关系的重要步骤。
神经科学的一个主要关键是了解我们的感官如何将光转化为视觉,将声音转化为听觉,将食物转化为味觉,将质地转化为触觉。嗅觉有一些特别之处。
了解大脑计算的基础对于推进计算和治疗神经系统疾病至关重要。尽管现代 AI 取得了越来越多的成功,但生物智能仍然是无与伦比的,并且在许多认知任务中的能源效率要高出几个数量级。
德国柏林马克斯·普朗克学会弗里茨·哈伯研究所(Fritz-Haber-Institut der Max-Planck-Gesellschaft)和柏林洪堡大学(Humblodt Universität zu Berlin)的研究团队提出了一个通用的数据驱动框架,该框架提供定量预测以及定性规则,用于通过符号回归和敏感性分析的组合指导所有数据集的数据创建。
物理系统中存在的纠缠的量化对于基础研究和许多前沿应用至关重要。现在,实现这一目标需要系统的先验知识或非常苛刻的实验程序,例如全状态断层扫描或集体测量。
该研究以「Deploying synthetic coevolution and machine learning to engineer protein-protein interactions」为题,于 2023 年 7 月 28 日发布在《Science》。
「这项研究表明,机器学习和人工智能可以成为构建更有效的纳米疗法的设计过程中不可或缺的一部分。
为了使量子材料的发现成为可能,来自太平洋西北国家实验室 (PNNL) 研究人员将详细的数据库作为他们的虚拟实验室。研究人员创建了一个新的未被充分研究的量子材料数据库,为发现新材料提供了一条途径。
但这种情况正在开始改变。借助一种称为稀疏卷积神经网络 (Sparse Convolutional Neural Network,SCNN) 的机器学习工具,研究人员可以专注于数据的相关部分并筛选出其余部分。
现在,科学家们已经证明,生成式人工智能(AI)可以为这个费力的过程中的某些过程提供一条捷径,提出可以增强抗体抗 SARS-CoV-2 和埃博拉病毒等病毒效力的序列。
PENCIL的分类模式识别特定表型富集的亚群,与差异丰度测试算法具有相同的应用。然而,基于监督学习的 PENCIL 框架提供了一种更灵活的方式来同时选择基因和识别亚群。为了证明这一独特的特征,与其他方法进行比较的模拟被设计为需要基因选择。
这就是劳伦斯伯克利国家实验室 (LBNL) 的「材料项目」(Materials Project)所面临的挑战。
最近,大型语言模型 (LLM),尤其是基于 Transformer 的模型在机器学习研究领域发展迅速。这些模型已成功应用于自然语言、代码生成、生物和化学研究等各个领域。
BM 欧洲研究院和苏黎世联邦理工学院的研究人员提出了 Regression Transformer(RT),这是一种将回归抽象为条件序列建模问题的方法。这为多任务语言模型引入了一个新方向——无缝桥接序列回归和条件序列生成。
法国国家科学研究中心和艾克斯-马赛大学以及荷兰马斯特里赫特大学的研究团队,利用模型比较框架并对比声学、语义(连续和分类)和声音到事件深度神经网络表示模型预测感知声音差异和 7 T 人类听觉皮层功能磁共振成像响应的能力。