
显著性检测的主要任务是检测出图像中具有最独特视觉特征的目标区域,它在视觉内容编辑、目标检测、渲染、分割等领域有着重要的应用。
本文对 北美计算语言学联合会 2019 年出版的《自然语言处理中迁移学习教程》(NAACL 2019 tutorial on Transfer Learning in NLP)进行了拓展。
伪彩色图在计算机视觉和机器学习中具有重要的应用,从深度图的可视化到类似图像差分等抽象应用都需要伪彩色图来帮助我们理解视觉信息。
在各个评估维度中,美国在人才、研究、发展、硬件四个维度遥遥领先,中国在应用和数据方面表现突出。
图像修复技术对于众多修图软件来说十分重要,在深度学习的帮助下图像修复算法的功能越来越强大,甚至对于大幅度污损的照片也能轻松修复。
企业数据科学仍然是一个新的领域。很多学者都还没有为为真正的企业解决过真正的问题,所以他们以一种与数据和业务环境相分离的方式教授教科书中的算法。
NLP 是人工智能中最难的问题之一,对它的研究与落地充满了挑战性。预训练模型 BERT 的出现给自然语言处理领域带来了里程碑式的改变。
最近,谷歌大脑团队发表了一篇论文,文中提出了一种叫做概念激活向量(Concept Activation vectors,CAV)的新方法,这种方法为深度学习模型的可解释性提供了一个全新的视角。
连接组学作为脑科学中的重要分支,一直以来致力于重建出脑部各个部分间的连接地图,以理解神经系统的工作原理。大脑中动辄十亿百亿计的细胞让这项研究充满了挑战。
面部图像操作是计算机视觉和计算机图形学里十分重要的研究方向,包括自动表情生成和面部风格迁移方向都离不开它的身影,也成为了美妆app里重要的AI技术。
公众号/AI前线 策划 | 刘燕 作者 | Jerry Wei 译者 | Sambodhi 编辑 | Lind […]
深度学习已经成为推荐系统领域的首选方法,但与此同时,已有一些论文指出了目前应用机器学习的研究中存在的问题,例如新模型结果的可复现性,或对比实验中基线的选择。
公众号/大数据文摘 大数据文摘出品 作者:宁静、曹培信 7月4日举办的百度开发者大会上,李彦宏宣布百度L4级自 […]
先进的机器学习算法逐步在专业的医疗诊断领域发挥出重要的作用,在检测糖尿病引起的眼部疾病和乳腺癌中都发挥了重要作用。